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ABSTRACT 
Dental patients often struggle to effectively communicate their pain during treatment where 
they rely on their gestures and physical movements. This may disturb the treatment process 
from the dentists. This patient self-reporting method also can be subjective and inconsistent. 
In this study, we present a machine learning-based automatic pain recognition system 
designed to objectively recognize the pain levels in dental patients. The bio-signals 
comprising heart rate obtained from Electrocardiography (ECG), muscle activities extracted 
from Electrocardiography (EMG), and brain activity derived from Electroencephalography 
(EEG) have been extracted using the AD-8232 sensor for ECG and the BITalino sensor kit 
for EMG and EEG recordings. These signals have been normalized and classified by a 
machine learning classifier into "High pain," "Mild pain," and "No pain" categories. The 
dataset has been collected from 8 subjects. Two electrodes are placed on the arms, and one is 
positioned on the right leg to perform the ECG data collection. In EEG data collection, the 
electrodes are placed on the participant‘s forehead to capture the brain's electrical activity. 
The electrodes used to collect EMG data are placed on the jaw muscles. The system underwent 
training and testing using the bio-signals as input data and the pain levels as the output. Python 
served as the programming language for machine learning training, while the open-source 
integrated development environment (IDE) Jupyter Notebook has been employed as the 
primary platform for the model development. Eight distinct machine learning algorithms have 
been utilized for the model training, including Random Forest Classifier, K-Neighbors 
Classifier, Bagging Classifier, Decision Tree Classifier, Logistic Regression, SGD Classifier, 
Linear SVC, and ADA Boost Classifier. Random Forest model demonstrated the best 
performance, achieving the highest accuracy of 65.1%. This research contributes to automatic 
pain assessment in dental treatment using machine learning.   

KEY WORDS: Automatic Dental Pain Recognition, Machine Learning, Bio-signals, 
Electrocardiography (ECG), Electromyography (EMG), 
Electroencephalogram (EEG). 

1. INTRODUCTION  
 

    The experience whenever a tooth is injured, or gum is inflamed is unpleasant. Dentin, 
possesses sensory pain mechanisms that respond to stimuli. Pain perception varies from 
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person to person. Among dental conditions, toothache ranks as one of the most common 
acute pains, alongside pericoronitis, alveolar osteitis, and apical periodontitis. [1].  

 
Usually, it is difficult for the dentist to detect whether a patient is really in pain while 

providing the treatment. Most of the patients also, due to feeling nervous, signifies that they 
are in pain although they are actually not. This gives a false indication to the doctors and 
affects the smoothness of the treatment. One of the methods for automatic pain detection is 
by using physiological signals recorded by wearable technology which are the 
electrocardiography (ECG), electroencephalogram (EEG) and electromyography (EMG). 
Heart rate (HR) and heart rate variability (HRV) are related to the autonomic nervous 
system, which controls internal body functions without us knowing. They can be measured 
using an electrocardiogram (ECG) and are used to gauge pain intensity. While heart rate 
(HR) is studied most often in pain research, sometimes researchers also look at heart rate 
variability (HRV), which shows how heart rate changes over time or between different 
frequencies [2].  

 
Electroencephalography (EEG), as a hotspot in cognitive neuroscience, has been one of 

the most progressed in the field of pain detection. EEG contains a wealth of information, 
including pain data [3]. Electroencephalography (EEG) has garnered interest as a low-cost, 
user-friendly method for evaluating brain function in pain recognition with a high temporal 
resolution [4]. When it comes to the diagnosis of facial muscle during orthodontic treatment, 
EMG is crucial in addressing issues linked to the neuromuscular approach and facial pain 
that arises from using functional appliances. EMG is more frequently used in dentistry to 
treat temporomandibular joint (TMJ) abnormalities, dysfunctional TMJ, dystonia, head and 
neck muscular diseases, cranial nerve lesions, and seizure disorders. Typically, surface 
electromyography (EMG) records muscle activity from the skin's surface across the muscle 
using two electrodes in order to evaluate muscle function [5].  

 
In the last decade, automatic pain recognition has moved from being a hypothesis to a 

crucial field of research. Due to this reason, some research has focused on applying artificial 
intelligence (AI) to categorize or detect different levels of pain based on auditory inputs. 
Although facial and body occlusions are commonly seen in infants, these techniques are 
particularly pertinent to analyse their cries as the more precise means of determining the 
discomfort that these babies are experiencing. Nonetheless, there's still a big difference in 
adult patients' voice-based pain detection [6]. Patients use the visual analogue scale (VAS) 
to express the intensity of their pain by drawing a line on a horizontal scale and anchoring 
it at each end with phrases such as "no pain" and "the worst pain imaginable". This and 
similar procedures are popular because they are simple, fit the need to assign a numerical 
value to the experience of pain, and frequently produce data that confirms expectations [7]. 

 
The primary focus of early pain assessment research is on the merging of biological data 

based on the BioVid Heat Pain Database (BVDB) and facial expression from multiple 
models [8]. For instance, Werner et al. [9] used multi-model signals and a random forest 
classifier to identify the degree of discomfort. Random forest classifier was used by Kächele 
et al. [10,11] to continuously forecast pain intensity. However, tracking various facial 
regions is necessary for facial expression-based pain identification, which can be difficult 
and time-consuming in clinical settings. Autonomic nervous system is greatly impacted by 
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pain, which alters heart rate and electrodermal activity (EDA) [12]. The bio-physiological 
signals enter the BioVid Heat Pain Database (BVDB) by: first, through the electrodermal 
activity (EDA), also known as skin conductance (SC) or galvanic skin response (GSR), that 
evaluates the changes in the electrical properties of the skin, which exhibits a strong 
correlation with emotional state [8]; second, electrocardiogram (ECG), which records heart 
electrical activity and provides information on the heart function [13]; and third, the 
trapezius muscle activates, indicating a high level of stress that is common during pain 
stimulation [8,14]. 

 
Promising outcomes in pain recognition have been seen by deep learning models using 

physiological inputs. Lopez-Martinez et al. applied ECG signal properties to multi-task 
neural networks with two hidden layers, one shared and one person-specific [15]. These 
neural networks outperformed single-task neural networks in terms of performance. Wang 
et al. [16] suggested deep hybrid classifiers based on Recurrent Neural Networks to classify 
the severity of pain. They employed a bidirectional Long Short-Term Memory (LSTM) 
network to combine manually created features with the temporal dynamic properties of 
physiological inputs. 

 
Pain severity in healthy people can be classified using several machine learning 

algorithms. Logistic regression, support vector machines (SVM) with different kernels, and 
other traditional techniques are used to develop models that distinguish between no pain 
and increasing levels of pain. Heart Rate Variability (HRV) may show how healthy people's 
autonomic systems respond to pain stimuli [17].  

 
This paper presents the development of a low-cost and simple pain recognition system 

for patients under dental treatment. Bio-signal data, including the ECG, EEG, and EMG, 
have been collected. A machine-learning-based pain recognition system has been developed 
and tested. The rest of the paper is organized as follows: Section 2 describes the 
methodology of the system, involving data collection and machine learning. The results, 
and discussion are presented in Section 3, and finally the conclusion is drawn in Section 4. 

2. METHODOLOGY 
Electroencephalogram (EEG), electromyography (EMG), and electrocardiography 

(ECG) are selected as target signals. The process begins by gathering data from the subject 
as shown in the flow chart. The pain levels output is classified into "High pain," "Mild pain," 
and "No pain" using a machine learning classifier. 

 
The first step of the system development is "Data collection: from (ECG, EMG, EEG)" as 

shown in Figure 1. Following data collection, the bio signals such as ECG, EMG, EEG are 
extracted and before being fed into the machine learning classifier, the feature values from the 
ECG, EEG and EMG signals are normalized. The system progresses to the application of 
machine learning algorithms to develop the model and classify the pain level.  

 
Subsequent decision nodes assess the pain level, " If the machine learning model determines 

the pain level is high, the process leads to a "high pain" outcome. If not, the system proceeds 
to the next decision node, "if the pain level medium" resulting in a "medium pain". If the pain 
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level is neither high nor medium, the final decision node "there no pain" leads to a "no pain" 
outcome.  

 

  
Figure 1: Flowchart illustrating the whole system 
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Figure 2: Block Diagram  

 
The block diagram as shown in Figure 2 depicts a schematic representation of a biomedical 

data acquisition and processing system for the pain recognition system. ECG, EEG and EMG 
sensors serve as the data collection unit, capturing bio signals. The captured signals from the 
sensors are then fed into a Raspberry Pi 4, which acts as the processing unit, and the data is 
processed on a laptop. The model training and testing are executed using Python programming 
language, a common choice for data analysis due to its extensive libraries and frameworks that 
support scientific computing. 

The output of the data processing is displayed on three types of devices: a laptop screen, 
which likely provides a comprehensive visual interface for detailed data examination; a display, 
which provides a more compact and immediate visual representation and a voice output which 
enhances user comfort; and provide a better understanding about the estimated pain level. This 
integration allows users to understand the system output easier, by receiving auditory feedback 
alongside visual cues.  

2.1 DATA COLLECTION 
 
The dataset has been collected from 8 subjects, for three distinct levels of pain: No pain, 

Mild Pain, and High Pain. The data collection process involved the simultaneous recording of 
three types of bio signals: ECG, EEG, and EMG. Subsequently, a machine learning model has 
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been developed to recognize pain levels based on the recorded bio signals. In this study, real-
time data collection was conducted employing the BITalino setup to capture EEG and EMG 
data, while the AD8232 ECG monitoring sensor interfaced with Arduino facilitated ECG data 
acquisition. Data analysis, visualization, and interpretation have been carried out using Open 
Signal, Arduino IDE, and Jupyter Notebook software. Both the BITalino and AD8232 ECG 
monitoring hardware systems were instrumental in acquiring data throughout the 
experimentation phase. Figure 3 shows the ECG monitoring system comprised of an Arduino 
R-3 microcontroller, an ECG module (AD8232), a breadboard, and jumper wires. The ECG 
module is connected to the body via electrodes. 

 

                         
                 Figure 3: ECG Sensor Setup                                      Figure 4: ECG Sensor Setup 

 

The subjects are attached with ECG electrodes as shown in Figure 4. The electrodes are 
small, with round patches attached to the skin. In the ECG setups, the AD8232 ECG Sensor 
module is used together with Arduino to record the ECG. The AD8232 is equipped with signal 
conditioning block for ECG applications and can interface with microcontrollers like the 
Arduino for data acquisition. Two electrodes are placed on the arms and the one is positioned 
on the right leg to perform the data collection of the electrical activity at the heart.  

 

 
                                                     Figure 5: Analog ECG Signal 

Figure 5 shows an ECG (Electrocardiogram) analogue signal. The graph displays the 
electrical activity of the heart over time. The line graph indicates different aspects of the heart's 
electrical signals. The electrocardiogram (ECG) signal has been acquired through the sampling 
frequency (fs) of 500 Hz. The analogue ECG signal has been pre-processing using MATLAB 
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software. MATLAB facilitates the filtration of waves through bandpass filters. Peak detection 
or signal thresholding methods are used to identify the peaks of the waves. The interpretation 
phase represents the concluding stage of the recoded ECG signals  
 

                               
 Figure 6: EEG & EMG Sensor Setup (BITalino Controller)            Figure 7: EEG Sensor placement  

 

The BITalino EEG sensor and controller device are used to capture different brain wave 
patterns. The electrodes are positioned to record brain waves such as alpha, beta, gamma, and 
delta. The optimal electrode placement on the scalp can be seen in Figure 7, ensuring accurate 
signal detection. The BITalino EEG sensor is shown in Figure 6, providing a clear view of the 
device. This EEG sensor setup and electrode placement are used for understanding the brain 
activity and record the brain weaves during the dental pain. In EEG data collection, the 
electrodes are fixed to the participant‘s heads to capture the brain's electrical activity. Using 
the BITalino controller, EEG signals are recorded. While electrodes are commonly positioned 
on the forehead to capture specific brain activities, standard practice involves the placement of 
multiple electrodes across the scalp [18]. 

 
Figure 8: Analog EEG Signal 
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The graph in Figure 8 shows a waveform of the EEG signal, which represents the brain 
waves of a person. The signal is composed of four distinct waveforms, each corresponding to 
a specific frequency range of brain waves: theta, beta, alpha, and gamma. The theta waveform 
is the lowest frequency range, typically associated with relaxed states or drowsiness. In the 
image, the theta waveform is relatively small and spans from the left to the right side of the 
graph [19]. 

 
The beta waveform is the next highest frequency range, typically associated with alertness 

and focus. In Figure 8, the beta waveform is larger and more prominent, occupying a significant 
portion of the graph from the left to the right side. The alpha waveform is the next frequency 
range, typically associated with relaxed wakefulness. In Figure 8, the alpha waveform is 
smaller than the beta waveform and is located between the theta and beta waveforms. The 
gamma waveform is the highest frequency range, typically associated with cognitive 
processing and attention [20]. In Figure 8, the gamma waveform is the smallest and is located 
towards the right side of the graph.  

 

 
                                                       Figure 9: EMG Sensor Placement 

 
Figure 6 shows the setup for the EMG data collection with a sensor using BITalino 

controller and electrodes. The electrodes are positioned on the skin to detect the electrical 
signals produced by muscle activity.  The BITalino Controller acts as the interface between the 
sensor and the recording device. Figure 9 shows the placement of the BITalino controller with 
electrodes for EMG which is attached to detect facial muscle activity. The electrodes are placed 
on the jaw muscle so that they can detect the tension of the jaw muscle for dental pain detection. 
The BITalino controller is used to monitor and record the electrical signals generated by his 
facial muscles in response to dental pain. The electrodes are situated on the subject's cheek and 
beneath the chin, suggesting the monitoring of muscles engaged in jaw movements.    

 
2.2 MACHINE LEARNING  

 
A machine learning model has been developed for the automated prediction of pain. Various 

machine learning algorithms are used to train the model, including Random Forest, K-
Neighbors, Bagging, Decision Tree, SGD (Stochastic Gradient Descent), Logistic Regression, 
Ada Boost, Linear SVC (Support Vector Classifier), and Multinomial Naive Bayes. It collects 
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bio signals from the subject, such as ECG, EEG, and EMG. The purpose is to forecast the 
subject's pain level, which is classified into three categories: "No Pain," "Mild Pain," and "High 
Pain." The model's goal is to reliably predict pain levels by examining bio signals. 

 
In this research, 8 subject’s bio signals have been recorded. At this stage of study, we were 

unable to get the data from real dental patients. Therefore, we have taken the data from 
individuals who are having no pain, mild pain, and high pain to represent data for the different 
pain levels. However, this study still shows the feasibility of the proposed technique for 
detecting pain automatically and the data from real dental patients’ need to be collected in the 
future study to imply a realistic automatic pain recognition system for dental patients. The 
recorded bio signal underwent pre-processing before being used to train the model. Training 
has been carried out using 80% of the pre-processed data, while the remaining 20% was used 
for testing.  

 
Random Forest is a collection of many decision trees. Each tree is trained on a randomly 

selected portion of the training data. To identify the best split for each node in the tree, only a 
randomly chosen subspace of the feature space is considered. Notably, the trees in the random 
forest are fully grown and not pruned. Random forests have proven successful in a variety of 
application domains, providing benefits such as high predictive accuracy and fast training and 
prediction timeframes [21,22]. The random forest can effectively manage the complex 
correlations and variability found in bio-signal data. 

 
The K-Neighbors Classifier algorithm divides data into categories based on its proximity to 

other data points. As a single tree model, Decision Tree Classifier is more prone to overfitting 
than its ensemble counterparts. Decision trees can capture complicated patterns, but they may 
lack generalizability when dealing with data variability, resulting in inferior performance in the 
context of this study [23]. Logistic Regression is a simple model that predicts probabilities 
using a logistic function. While effective in linear connections, its effectiveness in this case 
may be limited due to the nonlinear and multidimensional structure of bio-signals, making it 
difficult to accurately capture pain levels [24].  Stochastic Gradient Descent (SGD) is used to 
solve large-scale, sparse machine learning problems. While it is economical, its performance 
may be influenced by feature scaling sensitivity and the requirement for careful parameter 
optimization, resulting in unpredictability in its efficiency for pain recognition [25]. The Linear 
Support Vector Classifier performs well in high-dimensional spaces, but it may struggle with 
the nonlinear patterns found in bio-signal data, potentially resulting in lower accuracy 
compared to more complicated models [26]. 

 
3. RESULT AND DISCUSSION 

 
The random forest algorithm achieved an accuracy of 65.1% with a prediction time of 2.1 

seconds. The model exhibited a recall of 0.56, suggesting sensitivity to the dataset. 
Additionally, F1 score of 0.56 is attained, indicating a well-balanced trade-off between 
precision and recall. 
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Figure 10: Confusion Matrix 

 
Figure 10 displays a confusion matrix, which is a table used to evaluate the performance of 

a classification model. In this confusion matrix, the class "No Pain" has been correctly 
predicted 3092 times, while 1070 instances of "No Pain" have been inaccurately predicted as 
"Mild Pain", and 119 instances have been inaccurately predicted as "High Pain". For the class 
"Mild Pain", 11277 instances have been correctly predicted. However, 1018 instances of "Mild 
Pain" have been inaccurately predicted as "No Pain", and 72 instances have been inaccurately 
predicted as "High Pain". Lastly, for the class "High Pain", all instances (2607) have been 
correctly predicted. There are no instances inaccurately predicted as other classes. 

 

 
Figure 11: Model Accuracy  
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Figure 11 presents performance metrics, including accuracy, precision, recall, and F1 score, 
for various machine learning algorithms applied to a classification task. Each algorithm has 
been trained and evaluated on a dataset, but specific details about the dataset, such as its size, 
features, and target variable, are not provided.  
 

Based on the metrics, the Random Forest emerges as the most suitable algorithm for this 
machine learning model. With an accuracy of 0.65, precision of 0.56, recall of 0.56, and F1 
score of 0.56, it demonstrates the highest performance across all evaluated metrics. This 
algorithm's strength lies in its ability to handle complex datasets effectively, maintain 
robustness against overfitting, and provide balanced precision and recall values, resulting in a 
high F1 score. Thus, it offers a reliable solution for accurate classification tasks, making it the 
preferred choice based on all performance indicators.   

 
Figure 12: Classification Summary of Models 

 
In Figure 12, each algorithm is listed along the horizontal axis, and the vertical axis 

represents the score, ranging from 0 to approximately 0.7. The comparative analysis of machine 
learning algorithms is presented, where each algorithm is plotted against test accuracy, F1 
score, precision, and recall metrics. The Random Forest Classifier emerges as the top 
performer, with the highest scores across most metrics, including an accuracy of 0.651, an F1 
score of 0.565, and a precision of 0.565. However, the K-Neighbours Classifier stands out with 
the highest recall score of 0.575. Despite variations in performance, none of the other 
algorithms surpass the Random Forest Classifier in terms of test accuracy, F1 score, or 
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precision. The legend in the upper right corner succinctly summarizes the best-performing 
algorithms for each metric, highlighting the Random Forest Classifier as the leader in accuracy, 
F1 score, and precision, while the K-Neighbours Classifier excels in recall. This visualization 
aids in selecting the most suitable algorithm for specific tasks based on performance metrics. 

 

 
Figure 13: Final output of the system 

 
Figure 13 shows the final output, featuring both a graph and a voice output indicating the 

predicted pain level. The bars on the graph are positioned at different heights, reflecting the 
various pain levels. At the beginning, the final output of the system is shown as "No Pain." 
Subsequently, the model presents the probabilities of the other two pain level categories. 
Finally, the system articulates the final output both graphically and vocally. The graph visually 
represents the results of the pain assessment, with the 'No Pain' category exhibiting the highest 
peak, indicating a predicted pain level of "No Pain." Combined with voice output, the graph 
serves as a valuable tool for easily understanding of the pain level. 

The study achieves an accuracy of 65.1%. In future study, the data needs to be collected 
from real dental patients with various levels of pain during the treatment and the training and 
testing needs to be repeated using these data to represent a more practical and realistic 
automatic pain detection for dental patients. A larger dataset is also needed and the usage of 
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other bio-signals and sophisticated machine learning models can be applied to boost the 
system's performance.  

4. CONCLUSION 
In conclusion, this study presents a simple and low-cost pain recognition system in dental 

treatment. Three types of biosensors, which are the heart rate (ECG), muscle activity (EMG), 
and brain activity (EEG), have been used for the pain recognition system for dental treatment. 
The bio signals were captured using AD-8232 for ECG, BITalino sensor kit for EMG and EEG 
recordings from different subjects. The system provides an objective assessment of pain, 
classified into "High pain," "Mild pain," and "No pain" categories. A variety of machine 
learning algorithms had been employed and Random Forest Classifier emerged as the most 
effective, achieving an accuracy of 65.1%. Overall, this study contributes significantly to the 
advancement of intelligent pain assessment methodologies, offering potential implications in 
dental care. Future works involves the utilization of the data obtained from real patients in a 
hospital environment for the model training and testing to obtain a more accurate result. 
Medical-grade equipment also need to be used for a more reliable data collection process.   
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