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ABSTRACT

Accurate star detection plays a critical role in star sensors for spacecraft attitude
determination. However, various sources of noise such as cosmic radiation and sensor
imperfections can degrade the accuracy of star centroid estimation. This paper presents a
noise reduction algorithm that enhances the detection of star blobs in noisy star images. The
proposed method integrates feature extraction through differential smoothing with adaptive
thresholding techniques to effectively separate true star signals from background noise. To
validate the algorithm, synthetic star images with different noise levels were tested. The
results show that the proposed algorithm consistently detects all 20 target stars, achieving
high detection accuracy even under severe noise conditions, outperforming conventional
Laplacian of Gaussian (LoG) and Difference of Gaussian (DoG) approaches. This
improvement in denoising leads to more precise centroid extraction, contributing to more
reliable star sensor performance for space navigation applications.

Keywords: Star detection; noise reduction; centroiding algorithm; adaptive thresholding;
space navigation.

1.0 INTRODUCTION

Star sensors play a crucial role in spacecraft navigation. Unlike celestial bodies such as the
Moon and Sun, which provide limited reference points, stars offer an abundance of fixed
positions, making them highly advantageous for space navigation. Star sensors detect stars,
calculate their centroids, identify them, and determine the orientation and position of spacecraft
or satellites. However, the brightness of stars can cause a large spread, obstructing detection
[1]. It is essential to consider algorithms that can operate effectively under the harsh conditions
of space, where bright solar reflections and cosmic radiation introduce noise into star images.
One of the critical operations in star sensors is centroiding, which involves; the threshold
segmentation to remove background noise, and centroid extraction to determine precise star
locations. The objective of this paper is to study and evaluate noise reduction algorithms that
enhance star detection for more accurate centroiding. In addition, we aim to develop a new
algorithm that improves detection accuracy while maintaining lower computational complexity,
based on insights from existing studies. By advancing denoising techniques, the accuracy of
star centroid calculations can be optimized, thereby contributing to improved spacecraft
navigation performance.
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2.0 LITERATURE REVIEW

The space environment introduces several challenges that can interfere with reliable star
detection and centroiding. Due to the lack of atmosphere, there is no scattering medium to
diffuse sunlight, resulting in extremely harsh illumination contrasts, which then result to a low
SNR environment. A low SNR directly affects centroiding performance by reducing star
visibility, increasing false detections, and degrading positional accuracy [2]. As noted, star
trackers provide greater accuracy than other attitude sensors like magnetometers, gyroscopes,
sun sensors, and earth horizon sensors [3]. Two main types of imaging sensors are typically
considered for star trackers: complementary metal-oxide semiconductor (CMOS) and charge-
coupled device (CCD) [4], [5]. Active Pixel Sensor (APS) CMOS technology is especially suited
for space missions, as it offers high integration, better resistance to radiation, lower power use,
and lower cost compared to CCDs, making it ideal for power-constrained lunar missions
[6].Two fundamental techniques used in image-based star detection are segmentation and
centroiding. Thresholding is a segmentation method that separates star regions from the
background by comparing pixel intensities to a set threshold. Pixels above the threshold are
identified as stars, while lower ones are considered noise [7], [8]. This technique is commonly
used for big bright object elimination such as moon and planets in the star maps [9].

A study evaluating seven thresholding algorithms; Bernsen, Otsu, Tsai, Niblack, Kittler-
lllingworth, iterative thresholding, and improved iterative thresholding [10]. Bernsen's method
excels with perfect true detection number (TDN) of 11/11 for image A across all 10 noise
scenarios, the improved iterative method achieves acceptable TDN wchich is 94/94 for image
C basics and up to 95 in mixed noise, outperforming the standard iterative (5/10 correct per
image set) but faltering in 3-4 noise combinations with FDN rising to 760. Classical methods
like Otsu and Niblack suffer high FDN. Otsu at 189-42053 false detections in image C noisy
cases and rendering them unreliable beyond Poisson/multiplicative noise. Overall, Bernsen
yields 10/10 correct detections for images A/B and 6/10 for C, confirming superior noise
robustness among seven tested thresholding algorithms. However, o verreliance on TDN/FDN
ignores centroiding accuracy post-detection, a critical downstream step, and simulated images
(256x256 to 1024x1024) fail to represent high-FOV real trackers or dynamic distortions like
motion blur.

Another technique, Binary Large Object (BLOB) detection is used to extract star images by
identifying star-like objects in the captured images [11]. A comparative study from of four blob
detection techniques; Laplacian of Gaussian (LoG), Difference of Gaussian (DoG),
Determinant of Hessian (DoH) [12]. The results show that LoG and DoG detect a larger number
of blobs, with LoG achieving the highest detection count (1,366 blobs), whereas DoH primarily
detects larger blobs but with fewer detections (777 blobs). In addition, DoH produces the
largest average blob size with greater size variation, while DoG records the shortest detection
time at 4.27 seconds. The DoG method detects blobs by subtracting two Gaussian-blurred
versions of an image with different standard deviations. This operation highlights intensity
variations corresponding to blob-like structures while suppressing slow background changes
[13], [14]. Meanwhile, LoG method first smooths the image using a Gaussian filter and then
applies a Laplacian operator to identify regions of rapid intensity change [15]. Star candidates
are detected at zero-crossings of the filtered image, which correspond to blob centers. The
DoH method, which perfomed the best in this study, detects blobs by analyzing the second-
order intensity derivatives using the Hessian matrix [16], [17]. It responds strongly to regions
with pronounced curvature, allowing it to identify larger and more prominent star blobs. Though
simple and efficient, its accuracy depends heavily on choosing the right threshold, as poor
lighting or sensor noise can cause errors.

After detection, centroiding calculates the precise star location using the intensity-weighted
average of pixel positions, achieving sub-pixel accuracy [18], [19]. This involves computing the
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intensity-weighted average of pixel positions within a star region, resulting in a sub-pixel level
estimate of the star's centre. This step is critical for applications like spacecraft attitude control,
where small errors can impact orientation [2], [11], [20]. Accurate centroiding must account for
noise, pixel quantization, and optical distortion.

3.0 METHODOLOGY

The proposed algorithm focuses on enhancing star detection by reducing noise interference,
ensuring more accurate centroiding and identification of stars. As shown in Figure 1 is the
proposed block diagram of the algorithm.

Star Image Optical System Noise Reduction
(Input) :> (CMOS sensor) ::> Algorithm
Attitude -
.. /I\l: Star & Centroid
Determination Identification Extraction
(Output)

Figure 1: Block diagram of the proposed algorithm

The system starts with a star image captured using an optical system. The optical system used
is a CMOS sensor, as discussed earlier, since the CMOS sensor performs better compared to
other optical sensors. The captured image contains noise and distortion; therefore, the
proposed noise reduction algorithm is applied to remove unnecessary corrupted pixels in the
image. Next, the star centroid is calculated to extract the star coordinates, followed by star
identification, which is then used to determine the spacecraft attitude.

In this study, the focus is placed on enhancing the noise reduction algorithm within the star
sensor processing pipeline. Although the full system includes stages from capturing the star
image to determining the spacecraft’s direction, this paper only looks at the part where we
reduce noise caused by things like radiation and surface reflection. We test how well our
method works by using centroid extraction to check how accurate the detected star positions
are compared to known star data.

The algorithm begins with an initial feature extraction step that isolates star candidates from
the background. To prove that the proposed algorithm is ribust to noises, we simulate Gaussian
noise and added it into the star images. Gaussian noise is commonly used to simulate sensor
noise in optical devices and is mathematically characterised by its probability density function

[21].
1 (x — p)? (1)
p(x) = exp\ ——557—

2mo? 20°

The parameters used are: mean, u = 0, variance,? = 0.01. For each pixel I(x, y) [22]:
Igaussian(xr Y) = I(x: y) + ngaussian(x' Y) (2)

Where the noise term is drawn from Gaussian (normal) distribution:

Ngaussian (x,¥)~N(0,0.01) 3)

So the noise spreads around zero, with strength controlled by the variance.
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To refine this section, a differential smoothing step is applied, which enhances the distinction
between true star signals and background variations by adjusting contrast dynamically based
on local pixel neighbourhoods [23]. This ensures that star spots remain detectable even under
strong gradients caused by reflections or radiation noise. Equation (4)-(6) is the derivation and
modification from blob detection methods, discussed previously [11]. The image convolved
with two Gaussian filters with different standard deviations g; and o,, controlling the amount
of smoothing. A larger o smooths over larger areas. The image I(x,y) is smoothed at both
scales.

Ial(x» y) =1(x,y) * Gal(x, y), (4)
IUz(x'y):I(ny)*Gaz(x;y) (5)

Subtract the smoothed images to highlight intensity changes, as shown in equation (6).
Positive values of I;,, (x, y) indicate areas of increased intensity (bright blobs), meanwhile,
the negative values indicate areas of reduced intensity. Near-zero values represent flat regions
(background).

Iblob(x' y) = Ial(x' y) - 102 (x, y) (6)

Following feature extraction, the thresholding technique is introduced, allowing for adaptive
segmentation based on intensity variations across the image. The image is divided into small
windows centred at each pixel (x,y). Then, compute the local mean intensity M(x,y) in
equation (7), and the threshold value in equation (8) [24], [25]:

1 .. (7)
Lmean(x;y) = NZ( ) WI(’-']);
i,)e

Lmax & Lmin ®)

Ioutput(xr y) = 2

The difference between the blob (represent as 1) and the background (represent as 0) can be
decided:

1' if IDoG(xr Y) = Lmean(xr Y) (9)

Toutpur (%, ) = {0, otherwise

If the intensity of the original image at pixel (x, y), denoted as I(x, y), is greater than or equal
to the calculated threshold value T(x,y), then that pixel is classified as belonging to a blob
(which could be a star) and is assigned a binary value of 1. Otherwise, if the intensity I(x, y) is
less than the threshold value T(x,y), the pixel is classified as background and assigned a
binary value of 0.

Finally, the performance of the proposed noise reduction method will be compared with
standard LoG and DoG techniques to evaluate its effectiveness in improving star detection
accuracy under challenging conditions. The detection accuracy can be calculated with
equation (10):

min (Ndetected; Nactual) (1 0)

N actual

Detection Accuracy(%) =
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The performance will be evaluated using the synthetic star images with different noise levels
and star distributions, as shown in Figure 2 (a) and (b).

(a) (b)
Figure 2: Synthetic star images (a) 0.01 noise level (b) 0.05 noise level

Although the star positions vary between the images, this does not affect the testing process,
as each image is processed independently. The purpose of this test is to validate whether the
proposed algorithm can effectively reduce noise and enhance star features under varying
conditions. The variation in star location across images does not interfere with the validation,
as the focus is on the clarity and accuracy of the extracted star centroids after noise reduction.

4.0 RESULTS AND DISCUSSION

We collected data of total stars detected in synthetic images under different noise levels. We
evaluate the result by comparing the detection performance between three algorithm
techniques: LoG, DoG and proposed noise reduction algorithm.

4.1 Laplacian of Gaussian (LoG)

Firstly, we tested the LoG algorithm on the synthetic image of 20 stars with 0.01 noise level.
Figure 3 (a) and (b) shows the algorithm can detect some of the stars but mistook some of the
noise as the star.

(a) (b)
Figure 3: Star detection (a) Synthetic image of 0.01 noise level (b) Star detected using
LoG method
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For the noise level of 0.05, as shown in Figure 4 (a) and (b), the algorithm incorrectly identified
numerous noise artifacts as stars, resulting in a significant number of false detections from the

original 20 synthetic star blobs.

(a) (b)
Figure 4 : Star detection (a) Synthetic image of 0.05 noise level (b) Star detected using
LoG method

4.2 Difference of Gaussian (DoG)
Hence, we changed the LoG method by using DoG technique. Figures 5 (a) and (b) show that
the technique successfully detected all the 20 stars within 0.01 noise level.

(a) (b)
Figure 5: Star detection (a) Synthetic image of 0.01 noise level (b) Star detected using
DoG method

However, after we increased the noise level to 0.05, it detected around 26 blobs as the stars,
shown in Figures 6 (a) and (b). A similar issue occurred with the LoG technique at the noise
level of 0.01, where it indicates that a significant number of noise points were misinterpreted
as stars.

In the DoG method, different standard deviations (o) affect detection accuracy. A small o
captures fine details but amplifies noise, while a large o smooths the image, potentially losing
faint stars. The right o combination enhances contrast, suppresses noise, and ensures
accurate star detection without false positives or missing features.
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(a) (b)
Figure 6: Star detection (a) Synthetic image of 0.05 noise level (b) Star detected using
DoG method

4.3 Proposed Algorithm

To enhance the blob detection accuracy within the 0.05 noise level, we apply our proposed
algorithm where it integrates the feature extraction and thresholding techniques. As shown in
Figure 7 (a) and (b), the 20 stars were successfully detected.

(a) (b)

Figure 7: Synthetic image of 0.05 noise level (b) Star detected using proposed method.

44 Comparison Summary

Table 1 presents the comparison of star detection performance under two different noise levels

(0.01 and 0.05) using three algorithms: Laplacian of Gaussian (LoG), Difference of Gaussian
(DoG), and the proposed algorithm.

43



A.H. Razaman et. al. PERINTIS edournal, 2025, Vol. 15, No. 2, pp. 37-46

Table 1: Table of Summary

. Laplacian of Difference of .
Algorithm Gaussian (LoG Gaussian (DoG) Proposed Algorithm
Nolkz 0.01 0.05 0.01 0.05 0.01 0.05
Level
Star
Detected 29 600 20 26 20 20
Detection
Accuracy (%) 68.9 3.3 91.1 76.9 98.8 98.3

At a low noise level of 0.01, LoG detected 29 blobs, resulting in a detection accuracy of 68.9%,
indicating a considerable number of false positives. DoG performed better with 20 detections
and an accuracy of 0.911, while the proposed algorithm achieved the highest accuracy of
98.8% by correctly detecting all 20 stars with minimal false detections. Under a higher noise
level of 0.05, LoG showed significant performance degradation, detecting around 600 blobs
with a very low accuracy of 3.30% due to misclassification of noise as stars. DoG detected 26
blobs with an accuracy of 76.9%, while the proposed algorithm remained robust, accurately
detecting all 20 stars with an accuracy of 98.3%. These results demonstrate the effectiveness
and resilience of the proposed method in maintaining high detection accuracy even under
challenging noise conditions.

5.0 CONCLUSION AND FUTURE WORKS

To identify star regions effectively amidst noise, we compared two blob detection methods: the
Laplacian of Gaussian (LoG) and the Difference of Gaussian (DoG). Both approaches were
evaluated for their ability to enhance star detection accuracy, particularly under conditions with
varying levels of noise and interference. After an initial analysis, we determined that the DoG
method performed better due to its improved precision in isolating star features while reducing
noise. Consequently, we applied our proposed algorithm to further enhance robustness and
ensure reliable detection in diverse noisy environments. From the initial testing with the
synthetic images, it is proven that the integration of differential smoothing and adaptive
thresholding methods performed the best for detecting all 20 stars in the noisy image.
Additionally, we conclude that the gaussian kernel need to be carefully considered to optimize
detection accuracy. It is also crucial to determine a suitable threshold value to further enhance
the star detection and centroiding algorithm, ensuring more precise and reliable results.

The proposed research aims to achieve several key outcomes in the future. First, the
performance of the centroiding algorithm will be enhanced to optimize its speed and reduce
runtime, ensuring efficient star detection and tracking. Second, the developed algorithm will be
tested using synthetic and existing star images that contain different types of noise to simulate
real-world conditions such as: Gaussian noise, Poisson noise, Speckle noise and Salt-and-
Pepper noise. Lastly, the algorithm will be validated under real-world conditions by testing it in
a night sky environment and under varying celestial conditions using a star sensor integrated
camera and an image sensor. This practical implementation will demonstrate the robustness
and adaptability of the algorithm in diverse scenarios.
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