
																																																PERINTIS	eJournal,	2018,	Vol.	8,	No.	1,	pp.	17-43	
	

__________________________________________________________________________________	
 
	

25 

COLLISION AVOIDANCE PERFORMANCE ANALYSIS OF A VARIED LOADS 
AUTONOMOUS VEHICLE USING INTEGRATED NONLINEAR CONTROLLER 

 
Umar Zakir Abdul Hamid1, 2*, Yuichi Saito2, Hairi Zamzuri1, Pongsathorn Raksincharoensak2 

 
1 Vehicle System Engineering iKohza, Malaysia-Japan International Institute of Technology, 

Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia  
2 Department of Mechanical Systems Engineering, Tokyo University of Agriculture & 

Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588, Japan. 
 

* Corresponding author: umartozakir@gmail.com  
 
 

ABSTRACT 
 

This paper analyzes and studies the effect of varied vehicle loads to the collision avoidance 
(CA) system performance. The design comprises of Artificial Potential Field as the risk 
assessment and motion planning strategy and Nonlinear Model Predictive Control (NMPC) as 
the automated motion guidance. The study is important to determine robust NMPC weighting 
parameters for the vehicle states in varied loads vehicle collision avoidance situations. 
Simulation of the proposed system was done and evaluated. The results showed that the varied 
loads of the host vehicle affect the vehicle states error penalization. The findings will be helpful 
for a real-time implementation of a multi-scenario highway CA system to provide a well-tuned 
avoidance actuation by NMPC. It is done by identifying the most mercurial vehicle dynamics 
states in all variations of vehicle loads during CA navigations. 
 
Keywords: Collision Avoidance, Integrated Controller, Gain Sensitivity Analysis, Varied 
Loads, Autonomous Vehicle 
 
 
1.0 INTRODUCTION 

 
Autonomous vehicle is a rapidly progressive research theme in the automotive sector over the 
past few years [1-3]. It does not only involve the technical aspect but also stimulate other 
emerging subsectors such as ride sharing. For example, Volvo has launched ‘M’, a car-on-
demand in mid-2018 [4]. This shows the high prospect that this field possesses. In most 
roadmaps of autonomous vehicle development for the next few years, collision avoidance is 
one the area which frequently being mentioned due to its ability to reduce road fatalities [5-7]. 
Collision Avoidance System (CA) is a union of several strategies, i.e. Risk Assessment, Motion 
Planning and Path Tracking. The combination of the strategies is also known as Guidance and 
Navigation Control System [8, 9]. Risk Assessment measures the potential threat, while the 
emergency trajectory is formulated by the motion planning. The host vehicle CA navigation is 
then guided by the path tracking. A successful CA implementation for autonomous vehicle 
involves many research areas and does not rely solely on the intelligent system aspect alone. 
For example, several efforts have been done to improve the Human-Machine relationship to 
reduce the discomfort among new drivers of autonomous vehicles. This includes the 
assimilation of haptic feedback to the steering wheel in the hazardous occurrences, where it 
complements the system during unwanted events, thus increasing the comfort during 
navigations [10, 11]. 
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Despite much of the research done, most of the CA works are performed in controlled 
environments. For example, in [12] and [13], the CA designs are validated with low-medium 
host vehicle velocity (below 50 km/h). Besides, for some works, the CA architecture is 
evaluated with a priori known obstacles [14]. Furthermore, most of the works usually involved 
host vehicles with the kerb weight for the validation purpose and rarely adopting fully-seated 
passengers vehicle for the system's evaluation [15-16]. In reality, for a collision avoidance to 
be working, particularly for the highway collision risks, it should include the consideration of 
vehicle loads (passengers and luggage). The reason of this derived from the high dependency 
on road vehicles as the main transportation in most part of the world. For example, in Malaysia, 
most of the citizens prefer to use their own private vehicle for long-distance travel with their 
families in the festive seasons due to the deficient public transport systems [17]. This in return 
inflated the number of road fatalities during the period. 

 
Thus, implementation of CA system should be enforced upon the road vehicles. 

However, before this can be realized, the relationship between varied host vehicle loads to the 
CA performance should be studied. This is to enable the technology to be marketed for general 
audiences usage. In addition, the most mercurial vehicle states during the emergency 
navigation of a fully-seated vehicle which retain highest tracking error should be identified for 
penalization. This is crucial for a robust CA controller to be designed.  With the introduction 
of the electrical concept family vehicle, Volkswagen I.D. Buzz, the autonomous vehicle 
research began to focus on the family car [18] . Therefore, this work is assumed to be timely 
written. Relying on these facts, it is a necessity for a study to be done to address the 
aforementioned queries. 
 
1.1 Outlines and Contributions of the Paper 
 
The paper analyses the effects of varied vehicle loads (different number of passengers) to the 
proposed integrated nonlinear CA control system performance. Relatively, a gain sensitivity 
analysis for the Nonlinear Model Predictive Control (NMPC) weighting tuning parameters in 
the risky situations are examined. Two collision scenarios are proposed, i.e. (i) the host vehicle 
trying to avoid a parked vehicle at the side of the road and (ii) an intersection collision 
avoidance, where a previously occluded moving obstacle suddenly emerges, resulting in a high 
nonlinearity scenario. For each scenario, the system is validated with different loads. 
Simulations are done using MATLAB platform, to obtain the precise depiction of the tuning 
prior to a real-time implementation. The study is expected to be profoundly beneficial 
especially in the case of highway autonomous vehicle for general usage. 
  

Section 2 briefly describes the work methodology, i.e. the modeling aspects of the 
architecture, which comprises of the Artificial Potential Field Motion Planning strategy and 
NMPC controller. In Section 3, multi-scenario evaluation of the CA performance is detailed, 
where this involves two different risk scenarios as well as varied host vehicle passenger loads. 
Then, the results of the computational simulations are jotted. These include the relation of 
different vehicle loads to the weighting gain sensitivity of the architecture. The vehicle states 
which play the most important role pertaining to the robustness of the design are identified. 
The performance feasibility is measured by the ability of the vehicle to provide a maneuverable 
collision avoidance trajectory. Finally, section 4 concludes the work with a summary. It is 
important to be mentioned that since this work is a continuity of several CA projects by the 
authors, thus, the focus will be on the analysis of the effects of the varied loads towards the CA 
performance of the AV, instead of the CA system design.	
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2.0 METHODOLOGY 
 
2.1 Vehicle Modeling 
 
To allow the reproduction of this work by other researchers, this section briefly denotes the 
mathematical models of the vehicle dynamics and kinematics. The full vehicle model and its 
parameters are based on the work of [15].  
 
2.1.1 Vehicle Dynamics 
 
The model utilized in this work is 3 degrees of freedom (3-DOF) vehicle with 4 wheels. It is 
based on Proton Exora, a 7-seater vehicle [19]. This is to allow the examination of different 
passenger loads. The proposed vehicle is incorporated with an active front steering and braking 
actuators. The vehicle dynamics represent its lateral, longitudinal as well its yaw motion. The 
host vehicle longitudinal and lateral accelerations are indicated by Equations 1 and 2 as 
follows:  
 

𝑎" =
𝐹"
𝑚&

+ 𝑣) ⋅ 𝑟	 1  

 

𝑎) =
𝐹)
𝑚&

− 𝑣" ⋅ 𝑟	 2  

                                       
where 𝐹"  and 𝐹)  are the addition of the longitudinal and lateral forces, respectively. The 
longitudinal and lateral velocities are represented by 𝑣" and 𝑣), while 𝑚& is the vehicle mass. 
For the formulation of yaw rate, 𝑟, it is written as below, where  𝑟 represents the vehicle yaw 
motion: 
 

𝑟 =
𝑙1 ⋅ 𝑓)13 + 𝑓𝑦𝑓𝑙 − 𝑙3 ⋅ 𝑓)33 + 𝑓)35

𝐽7
	 3  

 
In Equation 3, 𝐽7 is the host vehicle yaw inertia, while 𝑙1 and 𝑙3 each represents the length 

from vehicle center of gravity (COG) to the front and rear tracks respectively. The forces which 
act along the tire lateral axis, 𝑓)9: are formulated using Pacejka Magic Tire Model [20] and jk 
denotes the tire positions (𝑓𝑙 = front left, 𝑓𝑟 = front right, 𝑟𝑙 = rear left and 𝑟𝑟 = rear right).   

 
All the  𝑟, 𝑎" and 𝑎) formulation relies on the vehicle mass (Equations 1-3). A simple 

open-loop simulation is done using the vehicle model to see the effect of different vehicle loads 
to the indicated dynamics. The scenario is given as the host vehicle initially moves in a straight 
line when a sine-wave input is applied to its steering input. The comparisons are conducted 
between a single-seated passenger vehicle with a fully-seated seven passengers vehicle.  

 
In Figure 1, it is shown that different vehicle loads output distinct longitudinal and lateral 

dynamics (i.e. its accelerations and velocities). This evaluation shows that the vehicle behavior 
is sensitive to its mass. For a highly nonlinear situation like in the appearance of a sudden 
moving obstacle which yields rapid increment of vehicle coupled dynamics, the difference is 
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expected to be bigger. Thus, this study will allow for a robust design parameter tuning of the 
low-level controller. 

 

 
Figure 1  Vehicle Lateral and Longitudinal Dynamics Comparison between Single-Seated 
Passenger (Dotted Blue) and Fully-Seated Passengers Vehicle (Red) 
 
2.1.2 Vehicle Kinematics 
 
The vehicle kinematics are represented by its current (𝑥, 𝑦)  coordinate as well orientation. It 
is moving in a (𝑥?@3, 𝑦?@3)		coordinate with orientation, 𝜃?@3 . The full vehicle kinematics 
model is as below: 
 

𝑥?@3 = 𝑉 ⋅ cos 𝛼?@3 + 𝜃?@3 4  
𝑦?@3 = 𝑉 ⋅ sin 𝛼?@3 + 𝜃?@3 5  

𝜃?@3 = 𝑟 6  

𝑉 = 𝑣𝑥2 + 𝑣𝑦2 	 7   

 
where 𝑉 are the relative velocity of the vehicle, and 𝑎?@3 represents its current side slip angle. 
 
2.2 Obstacle Kinematics 
 
The obstacle's kinematics formulation is as follows: 
 

𝑥M = 𝑉M ⋅ cos 𝛼M + 𝜃M 8  
𝑦M = 𝑉M ⋅ sin 𝛼M + 𝜃M 9  

 
where its (𝑥, 𝑦)  coordinates are indicated by 𝑥M, 𝑦M . The obstacle’s side slip angle and 
heading are written as 𝑎M and 𝜃M, respectively. 
 
2.3 Vehicle Collision Avoidance Systems 
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To allow feasible CA navigations, a multi-layer CA system with low-level controller 
actuations assimilation is highly sought after. This comprises of steering and braking 
intervention. Model Predictive Control is frequently used for this purpose [21-23]. This is due 
to its ability to provide future dynamics and control actions of the vehicle as well as possesses 
internal observer. As road vehicle is a nonlinear plant, thus, a nonlinear MPC provides better 
model fidelity for the optimization purpose [24, 25]. This ensures a series of precise updated 
vehicle dynamics and plant inputs. Therefore, to ensure a reliable avoidance maneuver, 
Nonlinear MPC is adopted due to its features and multiple-input and multiple-output (MIMO) 
specifications. 

 
Since this paper focuses on the examination of the varied-passenger loads effects on the 

CA performance, and not on the architecture design, thus for brevity, only a brief outline of the 
theoretical aspects is written. The architecture is illustrated in Figure 2, where Artificial 
Potential Field (APF) is assigned as the motion planning while Nonlinear Model Predictive 
Control acts as the automated motion guidance, which consists of steering and braking 
intervention. The design is taken from our previous works [13, 15, 21].  

 
 

 
 

Figure 2  Proposed Architecture of the Collision Avoidance System 
 
2.3.1 Artificial Potential Field 
 
Human drivers establish the optimal CA path by including the risk of obstacle's occurrence and 
lane departure. Deriving from that, the risk assessment should be designed according to these 
two factors [21]. The advantage of Artificial Potential Field compared to other risk assessment 
and path planning strategies is the measurement of risk and path replanning are done 
simultaneously. In addition, it considers the relative obstacle's whereabouts in relation to the 
current host vehicle's kinematics. APF provides a repulsive force, which creates imaginary 
mountain during the emergence of an obstacle, and an attractive force in the obstacle's absence, 
thus guiding the vehicle for the avoidance trajectory. The obstacle's risks are measured in both 
lateral and longitudinal aspects. The formulation is denoted in Equation 10. The risk field, 𝑈3QR: 
is a combination of road border considerations, 𝑈3  and the obstacle's risk, 𝑈M . This is 
corresponding to the current host vehicle's whereabouts. 
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𝑈3QR: 𝑥?@3, 	𝑦?@3 = 𝑈3 𝑥?@3, 𝑦?@3 + 𝑈M 𝑥?@3, 𝑦?@3 10  
 
The inclusion of road boundaries risk ensures the vehicle to always stay in the lane inside 

the road boundaries, ensuring no heading deviation after CA navigation. Based on the risk 
fields, the APF formulated the desired yaw rate and decelerations for the CA navigation. This 
in return promises a smooth trajectory. More detailed on APF design and the parameters 
utilized can be found in [21], [26] and [27]. 

 
2.3.2 Nonlinear Model Predictive Control 
 
Due to the high nonlinearity of the proposed CA scenarios which produces an abrupt increment 
of the host vehicle forces in lateral and longitudinal directions, thus it is important to adopt a 
nonlinear tracking controller. The vehicle model and its states which are used in the control 
design are as follows: 
 

𝜉	 = 𝑓 𝜉 𝑡 , 𝑢 𝑡 11  
 
where 𝜉 is the vehicle states vector, 𝑥?@3, 𝑦?@3, 𝑎"?@3, 𝑟?@3, 𝜃?@3, 𝑣"?@3 W and 𝑢(𝑡) is the input 
to the model, 𝛿Y, 𝑇[ W, with 𝛿Y as the active front steering angle, and 𝑇[ represents the braking 
torques interventions. 𝜉 are discretized by the Euler's method as follows: 

 
𝜉:\] = 𝑓^ 𝜉:, 𝑢: 	 12  

 
 

As for the NMPC optimization cost, the general cost function is utilized: 
 

argmin
𝑈𝑡

𝐽𝑁 𝜉𝑘, 𝑢𝑘, Δ𝑢𝑘 	 13  

𝑠. 𝑡. 
𝜉𝑘+1,𝑡 = 𝑓 𝜉𝑘,𝑡, 𝑢𝑘,𝑡 , 𝑘 = 𝑡, … , 𝑡 + 𝐻𝑝−1	 14  
Δ𝑢𝑘+1,𝑡 = 𝑢𝑘+1,𝑡 − 𝑢𝑘,𝑡, 𝑘 = 𝑡, … , 𝑡 + 𝐻𝑐−1 15  

𝑢𝑘,𝑡 ∈ 𝑢, 𝑘 = 𝑡, … , 𝑡 + 𝐻𝑐−1 16  
Δ𝑢𝑘,𝑡 ∈ Δ𝑢, 𝑘 = 𝑡, … , 𝑡 + 𝐻𝑐−1 17  

𝜉&,& = 𝜉& 18  
 

where 𝑡 depicts the current time instant and 𝜉:,&	represents the predicted state at the instant 𝑘, 
obtained by applying the control sequence 𝑢 = [𝑢&,&, … , 𝑢:,&] to the vehicle overall system with 
𝜉&,& = 𝜉& , the initial time. Only the first input vectors of the control horizon, 𝐻?  will be 
considered and taken as the optimization variables and 𝐻o denotes the prediction horizon. The 
cost function is written as: 
 

𝐽𝑁 𝜉𝑘, 𝑢𝑘, 𝛥𝑢𝑘 = 𝜉𝑘,𝑡 − 𝜉𝑟𝑒𝑓 𝐺

2
+ 𝑢𝑘,𝑡 𝐻

2
+ Δ𝑢𝑘,𝑡 𝐼

2
𝑡+𝐻𝑝−1

𝑘=𝑡

19  

 
where 𝜉3t1 is the reference replanned trajectory states and the first term of the cost function in 
Equation 19 calculates the sum of tracking state deviations while the inputs are denoted by the 
second term and its input rate deviations , 𝛥𝑢  by the third term. 𝐺,𝐻	 and 𝐼  respectively 
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represents the weighting matrices of appropriate dimensions. 𝐺  helps the first term in 
penalizing the errors from the reference trajectory while 𝐻 works to help the second term in 
preventing any sudden control increment. With the formulations, NMPC is expected to produce 
the required front steering angle and braking torques for CA navigation, based on the online 
risk calculated by APF. More details can be found in [15, 21]. 
 
2.3.3 Nominal Weighting Parameters 
 
The nominal weighting parameters for the vehicle state matrices used in the NMPC 
optimization cost (Equation 19) are tuned based on the nominal condition of the CA simulation, 
which is a single-seated passenger host vehicle. The parameters are written in Table 1. 
 

Table 1  Nominal NMPC Weighting Parameters 
Symbol Unit Value 
𝑇R 𝑠 0.015 
𝐻o − 13 
𝐻? − 9 
𝐻 − 𝑑𝑖𝑎𝑔 0.02, 0.0004  
𝐺 − 𝑑𝑖𝑎𝑔(0, 3.8, 8.5, 12, 30, 1.3) 
𝐼 − 𝑑𝑖𝑎𝑔(0.02, 0.0004) 

 
3.0 SIMULATION AND RESULTS 
 
In this section, the computational simulation details for the CA architecture in Figure 2 are 
written. The architecture is validated with two proposed scenarios. In the first scenario, the 
vehicle is avoiding a stranded vehicle at the roadside, when suddenly a pedestrian appearing, 
as shown in Figure 3 (a). While in Figure 3 (b), the second scenario is shown where a sudden 
appearing moving vehicle appeared crossing an intersection. The moving vehicle is previously 
hidden from driver's view by a wall. Scenario 2 causes the high nonlinearity increments in the 
vehicle dynamics. The host vehicle will avoid the obstacle by implementing both steering angle 
and braking torques in the two situations. For both scenarios, the host vehicle is moving with 
an initial speed of 60	𝑘𝑚/ℎ  and 85	𝑘𝑚/ℎ, respectively. 
 

The robustness of the controller design is evaluated based on these variations of host 
vehicle loads: (i) nominal kerb weight (vehicle with driver), (ii) five-seated passengers which 
give increment of 20% to the vehicle weight and (iii) fully-seated passengers with luggage 
which increase 36% of the vehicle weight. For each scenario, they are initially simulated with 
nominal tuning parameters (Table 1). The resulting CA navigation is analyzed, and with the 
results, the weighting parameters will be retuned relative to the findings. The states which need 
to be penalized further to allow for a robust CA navigation will also be identified. 
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Figure 3  Illustration of the proposed Collision Avoidance Scenario, where (a) and (b) each 
represents the first and second scenario 
 
3.1 Simulation Parameters 
 
In this section, the parameters of the vehicle, as well as its loads, are presented. Since the CA 
designs are based on our previous works in [21] and [26], thus the detailed parameters of the 
system are omitted from the literature and can be retrieved from the mentioned sources. The 
host vehicle's physical dimension is denoted in Table 2: 
 

Table 2  Host Vehicle Parameter 
Parameter Symbol Value 

Mass (Kerb Weight) 𝑚& 1486	𝑘𝑔 
Width 𝑤 1.8	𝑚 

Yaw Inertia 𝐽7	 6286	𝑘𝑔|}  
COG length towards frontal part 𝑙1 1.26	𝑚 

COG length towards rear part 𝑙3 1.90	𝑚 
 

For the passengers' body mass, the values are given as below and are taken from [28]. 
According to the work, out of 4630	million adults in the world, the average body mass for an 
adult human is 62.0	𝑘𝑔. Thus, for this work, the value is taken as the weight for each passenger. 

 
Table 3  Average Adult Human Body Mass [28] 

World Health 
Organization Region 

Adult Population (Millions) Average Body 
Mass (kg) 

World 4630 62.0 
 
In addition, for fully-seated passengers, two luggage weigh 50	𝑘𝑔 each are placed inside 

the vehicle. 
 

3.2 Architecture Performance with Nominal NMPC Parameters 
 
Since the focus of this work is not on the architecture design [21, 26], the simulation results 
only analyze the performance of the CA trajectory for each scenario with varied loads. The 
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examination includes its	(𝑥, 𝑦)	coordinates during navigation, yaw rate, heading as well as 
lateral and longitudinal accelerations. The system performance with nominal weighting is 
analyzed, and relatively, the updated weighting parameters of NMPC are obtained 
heuristically. 
 

In the first scenario, the host vehicle moves with an initial speed of 60	𝑘𝑚/ℎ. It was 
trying to avoid a stranded parked vehicle when a pedestrian appears. Using the nominal 
weighting parameters (Table 1), the host vehicle avoided the obstacle. The simulation is 
repeated with varied load passengers. Figure 4 (a) shows the avoidance trajectory. As can be 
seen, the architecture successfully avoided the obstacle, regardless of the vehicle loads. 
However, with five-seated and fully-seated passengers with luggage, the host vehicle produced 
some deviation in its avoidance navigations. This is due to the vehicle dynamics differences 
caused by the vehicle weight increments. Nonetheless, the deviation is not large since the host 
vehicle initial velocity is of low-medium speed. For the second scenario (Figure 4 (b)), the host 
vehicle managed to avoid the moving obstacle when it is occupied by single and five-seated 
passengers. Nevertheless, when it navigated with fully-seated passengers and luggage, the 
abrupt increment of nonlinearity yielded by the host vehicle's encounter with the previously 
occluded moving vehicle produced an infeasible CA trajectory. Thus, lane departure of the host 
vehicle is seen during the CA maneuver. 
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Figure 4  Performance of the host vehicle CA system with Nominal Parameters for Scenario 1 
(a) and Scenario 2 (b) for all variation of vehicle loads 

 
To obtain robust parameters for the system which can solve the aforementioned issues, 

the host vehicle dynamics during the CA navigation with nominal NMPC parameters in all 
collision scenarios with varied loads are analyzed. The most affected vehicle states in the 
evaluations are identified. The information will be used to update the NMPC weighting 
parameters afterward. 

 
To allow the readers to have a better understanding, the vehicle collision avoidance 

behaviors with nominal NMPC weighting parameters (Dotted Red Lines) in comparison to the 
updated NMPC weighting parameters (Blue Lines) are plotted in Figures 5 and 6. However, 
the details for the updated NMPC weighting parameters will only be discussed in the next 
section. 
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Figure 5  Comparisons of the Host Vehicle States and Control Actuations during Collision 
Avoidance of Scenario 1 using Nominal Parameters and Updated Parameters. Red Dotted Line 
depicts the nominal parameters performance, while Blue Line illustrates the host vehicle 
performance with updated NMPC weighting parameters 
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Figure 6  Comparisons of the Host Vehicle States and Control Actuations during Collision 
Avoidance of Scenario 2 using Nominal Parameters and Updated Parameters. Red Dotted Line 
depicts the nominal parameters performance, while Blue Line illustrates the host vehicle 
performance with updated NMPC weighting parameters 

 
For Scenario 1, with single-seated passengers (the left column in Figure 5, the nominal 

parameters managed to guide the host vehicle to avoid the parked vehicle and moving 
pedestrian. During the navigation of five-seated passengers (Middle Column) and fully-seated 
passengers with luggage (Right Column), the increment of the vehicle mass resulted in the 
instability of the yaw rate after the avoidance. This in return created the non-optimal trajectory 
shown in Figure 4 (a). The changes in lateral dynamics of the heavier host vehicle yield a delay 
in steering actuation. However, due to the simplicity of the scenario, the vehicle is still managed 
to navigate the CA trajectory despite the delay. For longitudinal motions, as can be seen in 



																																																PERINTIS	eJournal,	2018,	Vol.	8,	No.	1,	pp.	17-43	
	

__________________________________________________________________________________	
 
	

37 

Figures 5 and 6, the increment in vehicle weight does not affect its 𝑎" heavily compared to the 
lateral motions. 

 
Contrary to Scenario 1, Scenario 2 is a highly nonlinear scenario.  As can be seen by the 

vehicle states during the navigation (Figure 6), large heading changes are needed in short period 
to enable the CA maneuver. However, for the fully-seated passengers vehicle with luggage, the 
nonlinearity is inflated with the increased vehicle mass. The addition of vehicle loads affects 
the performance of CA navigation. When the vehicle navigated with fully-seated passengers 
and luggage, CA interventions could not be applied by the system. Consequently, an infeasible 
trajectory is evident in Figure 4 (b), where the steering angle is over-actuated due to the 
increased nonlinearity allowing the vehicle to slide away from the original path before avoiding 
the collisions. However, for the host vehicle with kerb weight (Figure 6 (Left Column)) and 
five-seated passengers (Figure 6 (Middle Column)), the navigation is feasible with the nominal 
NMPC weighting parameters. In spite of that, similar to Scenario 1, the longitudinal motions 
of the host vehicle are less affected by the various loads. As can be seen, in all situations, the 
host vehicle successfully provides braking intervention prior to the steering actuation (Figure 
6). 
 
3.3 Architecture Performance with Updated NMPC Parameters 
 
From the gain sensitivity analyses in the previous section, it is identified, that during the 
navigation in both scenarios, the lateral dynamics of the host vehicle are shown to be more 
mercurial and affected to the varied host vehicle loads compared to its longitudinal behavior. 
Based on this, the NMPC parameters are updated. The updated nominal NMPC parameters are 
given in Tables 4 and 5.  
 

Table 4  Updated NMPC Weighting Parameters for Scenario 1 
Symbol Unit Value 
𝑇R 𝑠 0.015 
𝐻o − 13 
𝐻? − 9 
𝐻 − 𝑑𝑖𝑎𝑔 0.02, 0.0004  
𝐺 − 𝑑𝑖𝑎𝑔(0, 3.8, 8.5, 15, 30, 1.3) 
𝐼 − 𝑑𝑖𝑎𝑔(0.02, 0.0004) 

 
Table 5  Updated NMPC Weighting Parameters for Scenario 2 

Symbol Unit Value 
𝑇R 𝑠 0.015 
𝐻o − 13 
𝐻? − 9 
𝐻 − 𝑑𝑖𝑎𝑔 0.01, 0.0004  
𝐺 − 𝑑𝑖𝑎𝑔(0, 3.8, 8.5, 30, 40, 1.3) 
𝐼 − 𝑑𝑖𝑎𝑔(0.01, 0.0004) 

 
For Scenario 1 (Table 4), the increment is in the lateral states error penalization (i.e. 

yaw and heading angle). Due to the scenario is of low-medium speed, the increment is small 
in relation to the nominal parameters. However, the small increments are not valid for Scenario 
2 (Table 5). The larger yaw and heading deviations demand larger gains. This is due to the 
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higher host vehicle initial speeds as well as the nonlinearity of the scenario. In addition to that, 
for Scenario 2, to allow reliable tracking by NMPC, a harder gain is given to the active steering 
angle to enforce the maneuver. 

 
Though this section can be simplified by simply applying the Updated Parameters for 

Scenario 2 for both scenarios, however, these findings are still jotted down to give the idea to 
the readers and researchers in this field about the importance of gain sensitivity to the NMPC 
performance. Different scenario nonlinearity demands different gain parameters. The 
performance with the updated NMPC parameters are shown in Figures 5-7. 

 
With the updated parameters, it is shown that the vehicle is robust enough during 

navigation with each loads variant for the Scenario 1 Collision Avoidance. The vehicle states 
and control actuations using the updated NMPC weighting parameters for the scenario are 
shown in Figure 5 (Blue Line). As can be seen, the updated parameters managed to aid the host 
vehicle in diminishing the heading deviations during the avoidance for all vehicle loads 
variations. For Scenario 2, due to the more complex obstacle emergence and avoidance, the 
updated parameters are of larger values. From the vehicle states shown in Figure 6 (Blue Line), 
the steering angle and braking torques managed to output desired metrics for the automated 
motion guidance. However, for the updated gains, there are trade-offs for the CA performance 
where some spikes occurred to the lateral accelerations during the avoidance. These are due to 
the higher vehicle velocities for the second scenario. This can be reduced by assimilating a 
spike control strategy into the system. Using the Updated NMPC weighting parameters, the 
host vehicle managed to avoid the obstacles in all scenarios, regardless of its loads. The 
avoidance trajectory using the updated gains are shown in Figure 7, where the architecture 
yielded a feasible collision avoidance maneuver for the host vehicle, regardless of the vehicle 
loads. 
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Figure 7  Performance of the host vehicle CA system with Updated NMPC Weighting 
Parameters for Scenario 1 (a) and Scenario 2 (b) for all variation of vehicle loads. 

 
 

4.0 CONCLUSIONS AND FUTURE WORKS 
 
This work is done to analyze the effect of NMPC weighting gains on the proposed CA 
architecture in relation to the varied loads of the host vehicle. Concluding this work, it is 
important to notify that to design a robust CA system with varied loads, it is commendable to 
have a larger penalization gain on the lateral motions error, due to its sensitivity to the vehicle 
loads increment. This is to enable the multi-scenario collision avoidance navigation, regardless 
of the vehicle mass. In the results, it is shown that with the updated parameters, the host vehicle 
successfully avoided the obstacle regardless of the loads. Future works include real-time 
implementation of the algorithms with varied loads host vehicle. The findings and 
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understandings from this work are beneficial for a lot of future works involving path tracking, 
collision avoidance as well as vehicle dynamics in the context of Advanced Driver Assistance 
System fields. In addition, complementing the works, adaptive NMPC online tuning will be 
explored for a more reliable navigation. 
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